Superconvergence for Optimal Control Problems Governed by Semi-linear Elliptic Equations

نویسندگان

  • Yanping Chen
  • Yongquan Dai
چکیده

In this paper, we will investigate the superconvergence of the finite element approximation for quadratic optimal control problem governed by semi-linear elliptic equations. The state and co-state variables are approximated by the piecewise linear functions and the control variable is approximated by the piecewise constant functions. We derive the superconvergence properties for both the control variable and the state variables. Finally, some numerical examples are given to demonstrate the theoretical results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Posteriori Error Estimates for Semilinear Boundary Control Problems

In this paper we study the finite element approximation for boundary control problems governed by semilinear elliptic equations. Optimal control problems are very important model in science and engineering numerical simulation. They have various physical backgrounds in many practical applications. Finite element approximation of optimal control problems plays a very important role in the numeri...

متن کامل

Weak and strong minima : from calculus of variation toward PDE optimization

This note summarizes some recent advances on the theory of optimality conditions for PDE optimization. We focus our attention on the concept of strong minima for optimal control problems governed by semi-linear elliptic and parabolic equations. Whereas in the field of calculus of variations this notion has been deeply investigated, the study of strong solutions for optimal control problems of p...

متن کامل

Necessary Optimality Conditions for Some Control Problems of Elliptic Equations with Venttsel Boundary Conditions

In this paper we derive a necessary optimality condition for a local optimal solution of some control problems. These optimal control problems are governed by a semi-linear Vettsel boundary value problem of a linear elliptic equation. The control is applied to the state equation via the boundary and a functional of the control together with the solution of the state equation under such a contro...

متن کامل

Global Superconvergence for Optimal Control Problems Governed by Stokes Equations

In this paper, the global superconvergence analysis for the finite element approximation of the distributed optimal control governed by Stokes equations is discussed. For the control, a global superconvergence result is derived by applying patch recovery technique. For the state and the co-state, the global superconvergence results are derived by applying some postprocessing techniques for the ...

متن کامل

Superconvergence for Neumann boundary control problems governed by semilinear elliptic equations

This paper is concerned with the discretization error analysis of semilinear Neumann boundary control problems in polygonal domains with pointwise inequality constraints on the control. The approximations of the control are piecewise constant functions. The state and adjoint state are discretized by piecewise linear finite elements. In a postprocessing step approximations of locally optimal con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2009